Moto Documentation
Release 4.1.2.dev

Steve Pulec

Feb 04, 2023

GETTING STARTED

1 Getting Started 3
2 Additional Resources S
2.1 Getting Started with MOto o e e e e e e e e e 5
2.2 Non-Python SDK’s/ServerMode e 11
23 FAQ . . . e 14
24 TAM-like Access Control oL e e e e e e e 15
2.5 AWS Config Support o L e e e e e e 16
2.6 Multi-Account SUPPOTT . .« v v v v v o e 19
2.7 Configuration OptonS i i e e e e e e e e e e e e e 21
2.8 Implemented Services e e 29
29 Contributing e e 236
2.10 Development Installation L 237
2,11 Architecture o e 237
2,12 New Features 239
2.13 PR Checklist e e e 240
2.14 FAQ for Developers o i e e e e e e e 241
2.15 Development Tips o oo i e e e e e 243
2.16 Intercepting URLS o o e e 243
207 WIIHNZ SIS . . o v o o o e 244
2,18 Utlities o oo e e e e e e e 245
2.19 State Transition Management e 247
Index 249

Moto Documentation, Release 4.1.2.dev

A library that allows you to easily mock out tests based on AWS infrastructure.

GETTING STARTED 1

http://aws.amazon.com/

Moto Documentation, Release 4.1.2.dev

2 GETTING STARTED

CHAPTER
ONE

GETTING STARTED

If you’ve never used moto before, you should read the Gerting Started with Moto guide to get familiar with moto and
its usage.

Moto Documentation, Release 4.1.2.dev

4 Chapter 1. Getting Started

CHAPTER
TWO

ADDITIONAL RESOURCES

* Moto Source Repository

¢ Moto Issue Tracker

2.1 Getting Started with Moto

2.1.1 Installing Moto

You can use pip to install the latest released version of moto, and specify which service(s) you will use:

pip install 'moto[ec2,s3,..]'

This will install Moto, and the dependencies required for that specific service.

If you don’t care about the number of dependencies, or if you want to mock many AWS services:

pip install 'moto[all]’

If you want to install moto from source:

git clone git://github.com/getmoto/moto.git
cd moto
pip install '.[all]’'

2.1.2 Moto usage

For example, we have the following code we want to test:

import boto3

class MyModel:
def __init__(self, name, value):
self.name = name
self.value = value

def save(self):
s3 = boto3.client("s3", region_name="us-east-1")
s3.put_object(Bucket="mybucket", Key=self.name, Body=self.value)

There are several ways to verify that the value will be persisted successfully.

https://github.com/getmoto/moto
https://github.com/getmoto/moto/issues

Moto Documentation, Release 4.1.2.dev

Decorator

With a decorator wrapping, all the calls to S3 are automatically mocked out.

import boto3
from moto import mock_s3
from mymodule import MyModel

@Gmock_s3

def test_my_model_save():
conn = boto3.resource("s3", region_name="us-east-1")
We need to create the bucket since this is all in Moto's 'virtual' AWS account
conn.create_bucket (Bucket="mybucket")

model_instance = MyModel("steve", "is awesome")
model_instance.save()

body = conn.Object("mybucket", "steve").get(Q[
"Body"].read() .decode("utf-8")

assert body == "is awesome"

Context manager

Same as the Decorator, every call inside the with statement is mocked out.

def test_my_model_save(Q):
with mock_s3():
conn = boto3.resource('"s3", region_name="us-east-1")
conn.create_bucket (Bucket="mybucket")

model_instance = MyModel('steve", "is awesome')
model_instance.save()

body = conn.Object("mybucket", "steve").get(Q[
"Body"].read() .decode("utf-8")

assert body == "is awesome"

Raw

You can also start and stop the mocking manually.

def test_my_model_save():
mock = mock_s3()
mock.start()

conn = boto3.resource('s3", region_name="us-east-1")
conn.create_bucket (Bucket="mybucket")

model_instance = MyModel("steve", "is awesome")

(continues on next page)

6 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

(continued from previous page)

model_instance.save()

body = conn.Object("mybucket", "steve").get(Q[
"Body"].read() .decode("utf-8")

assert body == "is awesome"

mock.stop()

Unittest usage

If you use unittest to run tests, and you want to use moto inside setUp, you can do it with .start() and .stop() like:

import unittest
from moto import mock_s3
import boto3

def func_to_test(bucket_name, key, content):
s3 = boto3.resource("s3")
object = s3.0bject(bucket_name, key)
object.put(Body=content)

class MyTest(unittest.TestCase):
mock_s3 = mock_s3()
bucket_name = "test-bucket"
def setUp(self):
self.mock_s3.start()

you can use boto3.client("s3") if you prefer
s3 = boto3.resource("s3")

bucket = s3.Bucket(self.bucket_name)
bucket.create()

def tearDown(self):
self.mock_s3.stop()

def test(self):
content = b"abc"
key = "/path/to/obj"

run the file which uploads to S3
func_to_test(self.bucket_name, key, content)

check the file was uploaded as expected
s3 = boto3.resource("s3")

object = s3.0bject(self.bucket_name, key)
actual = object.get(Q["Body"].read()
self.assertEqual (actual, content)

2.1. Getting Started with Moto 7

https://docs.python.org/3/library/unittest.html

Moto Documentation, Release 4.1.2.dev

Class Decorator

It is also possible to use decorators on the class-level.

The decorator is effective for every test-method inside your class. State is not shared across test-methods.

@mock_s3
class TestMockClassLevel (unittest.TestCase):
def setUp(self):
s3 = boto3.client("s3", region_name="us-east-1")
s3.create_bucket (Bucket="mybucket")

def test_creating_a_bucket(self):
'mybucket', created in setUp, is accessible in this test
Other clients can be created at will

s3 = boto3.client("s3", region_name="us-east-1")
s3.create_bucket (Bucket="bucket_inside")

def test_accessing_a_bucket(self):
The state has been reset before this method has started
‘mybucket' is recreated as part of the setUp-method
'bucket_inside' however, created inside the other test, no longer exists
pass

Note: A tearDown-method can be used to destroy any buckets/state, but because state is automatically destroyed before
a test-method start, this is not strictly necessary.

Stand-alone server mode

Moto also comes with a stand-alone server allowing you to mock out an AWS HTTP endpoint. For testing purposes,
it’s extremely useful even if you don’t use Python.

$ moto_server -p3000
* Running on http://127.0.0.1:3000/

However, this method isn’t encouraged if you’re using boto3, the best solution would be to use a decorator method.
See Non-Python SDK's / Server Mode for more information.

2.1.3 Recommended Usage

There are some important caveats to be aware of when using moto:

8 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

How do | avoid tests from mutating my real infrastructure

You need to ensure that the mocks are actually in place.

1. Ensure that your tests have dummy environment variables set up:

export AWS_ACCESS_KEY_ID='testing'
export AWS_SECRET_ACCESS_KEY='testing'
export AWS_SECURITY_TOKEN='testing'
export AWS_SESSION_TOKEN='testing'
export AWS_DEFAULT_REGION='us-east-1'

2. Do no embed credentials directly in your code. This is always considered bad practice, regardless of whether
you use Moto. It also makes it impossible to configure fake credentials for testing purposes.

3. VERY IMPORTANT: ensure that you have your mocks set up BEFORE your boto3 client is established. This
can typically happen if you import a module that has a boto3 client instantiated outside of a function. See the
pesky imports section below on how to work around this.

Note: By default, the region must be one supported by AWS, see Can I mock the default AWS region? for how to
change this.

Example on usage

If you are a user of pytest, you can leverage pytest fixtures to help set up your mocks and other AWS resources that you
would need.

Here is an example:

@pytest. fixture(scope="function")

def aws_credentials():
"""Mocked AWS Credentials for moto."""
os.environ["AWS_ACCESS_KEY_ID"] = "testing"
os.environ["AWS_SECRET_ACCESS_KEY"] = "testing"
os.environ["AWS_SECURITY_TOKEN"] = "testing"
os.environ["AWS_SESSION_TOKEN"] = "testing"
os.environ["AWS_DEFAULT_REGION"] = "us-east-1"

@pytest.fixture(scope="Ffunction")
def s3(aws_credentials):
with mock_s3(Q:
yield boto3.client("s3", region_name="us-east-1")

In the code sample above, all of the AWS/mocked fixtures take in a parameter of aws_credentials, which sets the
proper fake environment variables. The fake environment variables are used so that botocore doesn’t try to locate real
credentials on your system.

Next, once you need to do anything with the mocked AWS environment, do something like:

def test_create_bucket(s3):
s3 is a fixture defined above that yields a boto3 s3 client.
Feel free to instantiate another boto3 S3 client -- Keep note of the region though.
s3.create_bucket (Bucket="somebucket")

(continues on next page)

2.1. Getting Started with Moto 9

https://pytest.org/en/latest/
https://pytest.org/en/latest/fixture.html#fixture

Moto Documentation, Release 4.1.2.dev

(continued from previous page)

result = s3.list_buckets()
assert len(result["Buckets"]) ==
assert result["Buckets"][0]["Name"] == "somebucket"

What about those pesky imports

Recall earlier, it was mentioned that mocks should be established _ BEFORE__ the clients are set up. One way to
avoid import issues is to make use of local Python imports —i.e. import the module inside of the unit test you want to
run vs. importing at the top of the file.

Example:

def test_something(s3):

from some.package.that.does.something.with.s3 import some_func # <-- Local import.
—for unit test

A4 Importing here ensures that the mock has been established.

some_func() # The mock has been established from the "s3" pytest fixture, so this.,
—function that uses
a package-level S3 client will properly use the mock and not reach.
—out to AWS.

Patching the client or resource

If it is not possible to rearrange imports, we can patch the boto3-client or resource after the mock has started. See the
following code sample:

The client can come from an import, an __init__-file, wherever..
outside_client = boto3.client("s3")
s3 = boto3.resource("s3")

@mock_s3

def test_mock_works_with_client_or_resource_created_outside():
from moto.core import patch_client, patch_resource
patch_client(outside_client)
patch_resource(s3)

assert outside_client.list_buckets()["Buckets"] == []

assert list(s3.buckets.all()) == []

This will ensure that the boto3 requests are still mocked.

10 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

Other caveats

For Tox, Travis CI, and other build systems, you might need to also perform a fouch ~/.aws/credentials command before
running the tests. As long as that file is present (empty preferably) and the environment variables above are set, you
should be good to go.

2.2 Non-Python SDK’s / Server Mode
Moto has a stand-alone server mode. This allows you to use Moto with any of the official AWS SDK’s.

2.2.1 Installation

Install the required dependencies using:

pip install moto[server]

You can then start it like this:

$ moto_server

You can also pass the port:

$ moto_server -p3000
* Running on http://127.0.0.1:3000/

If you want to be able to use the server externally you can pass an IP address to bind to as a hostname or allow any of
your external interfaces with 0.0.0.0:

$ moto_server -H 0.0.0.0
* Running on http://0.0.0.0:5000/

Please be aware this might allow other network users to access your server.

2.2.2 Start within Python

It is possible to start this server from within Python, in a separate thread. By default, this server will start on port 5000,
but this is configurable.

from moto.server import ThreadedMotoServer

server = ThreadedMotoServer()

server.start()

run tests

client = boto3.client("service", endpoint_url="http://localhost:5000")

server.stop()

Note that the ThreadedMotoServer and the decorators act on the same state, making it possible to combine the two
approaches. See the following example:

2.2. Non-Python SDK’s / Server Mode 11

Moto Documentation, Release 4.1.2.dev

class TestThreadedMotoServer(unittest.TestCase):

def setUp(self):
self.server = ThreadedMotoServer ()
self.server.start()

def tearDown(self):
self.server.stop()

@mock_s3

def test_load_data_using_decorators(self):
server_client = boto3.client("s3", endpoint_url="http://127.0.0.1:5000")
server_client.create_bucket (Bucket="test")

in_mem_client = boto3.client("s3")
buckets = in_mem_client.list_buckets() ["Buckets"]
[b["Name"] for b in buckets].should.equal(["test"])

This example shows it is possible to create state using the TreadedMotoServer, and access that state using the usual
decorators. Note that the decorators will destroy any resources on start, so make sure to not accidentally destroy any
resources created by the ThreadedMotoServer that should be kept.

2.2.3 Run using Docker

You could also use the official Docker image from https://hub.docker.com/r/motoserver/moto/tags:

docker run motoserver/moto:latest

2.2.4 Example Usage

To use Moto in your tests, pass the endpoint_url-parameter to the SDK of your choice.

In Python:

boto3.resource(
service_name='s3",
region_name='us-west-1",
endpoint_url="http://localhost:5000"'

In Java:

AmazonSQS sgs = new AmazonSQSClient();
sgs.setRegion(Region.getRegion(Regions.US_WEST_2));
sgs.setEndpoint ("http://localhost:5000");

In Scala:

val region = Region.getRegion(Regions.US_WEST_2).getName

val serviceEndpoint = "http://localhost:5000"

val config = new AwsClientBuilder.EndpointConfiguration(serviceEndpoint, region)

val amazonSqs = AmazonSQSClientBuilder.standard() .withEndpointConfiguration(config).

1 i I |
—purld (continues on next page)

12 Chapter 2. Additional Resources

https://hub.docker.com/r/motoserver/moto/tags

Moto Documentation, Release 4.1.2.dev

(continued from previous page)

|

In Terraform:

provider "aws" {

region = "us-east-1"
skip_credentials_validation = true
skip_metadata_api_check = true
skip_requesting_account_id = true
s3_force_path_style = true

endpoints {
lambda = "http://localhost:5000"
}

See the Terraform Docs for more information.
Other languages:

e Java

* Ruby

* Javascript

2.2.5 Use ServerMode using the decorators

It is possible to call the MotoServer for tests that were written using decorators. The following environment variables
can be set to achieve this:

TEST_SERVER_MODE=true

Whenever a mock-decorator starts, Moto will:
1. Send a reset-request to http://localhost: 5000, removing all state that was kept
2. Add the endpoint_url parameter to boto3, so that all requests will be made to http://localhost:5000.

Optionally, the http://localhost:5000 endpoint can be overridden by:

TEST_SERVER_MODE_ENDPOINT=http://moto-server:5000

This can be used for example in case of docker-compose configuration that runs Moto server in a separate service
container.

Calling the reset-API ensures the same behaviour as normal decorators, where the complete state is removed. It is
possible to keep the state in between tests, using this environment variable:

MOTO_CALL_RESET_API=false

2.2. Non-Python SDK’s / Server Mode 13

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/guides/custom-service-endpoints
https://github.com/getmoto/moto/blob/master/other_langs/sqsSample.java
https://github.com/getmoto/moto/blob/master/other_langs/test.rb
https://github.com/getmoto/moto/blob/master/other_langs/test.js

Moto Documentation, Release 4.1.2.dev

2.2.6 Dashboard

Moto comes with a dashboard to view the current state of the system:

http://localhost:5000/moto-api/

2.2.7 Reset API

An internal API endpoint is provided to reset the state of all of the backends. This will remove all S3 buckets, EC2
servers, etc.:

requests.post("http://motoapi.amazonaws.com/moto-api/reset")

2.2.8 Install with Homebrew

Moto is also available to install using Homebrew, which makes it much easier to manage if you’re not using Python as
your primary development language.

Once Homebrew is installed, you can install Moto by running:

brew install moto

To make the Moto server start up automatically when you log into your computer, you can run:

brew services start moto

2.2.9 Caveats

The standalone server has some caveats with some services. The following services require that you update your hosts
file for your code to work properly:

1. s3-control

For the above services, this is required because the hostname is in the form of AWS_ACCOUNT _ID.localhost. As a
result, you need to add that entry to your host file for your tests to function properly.

2.3 FAQ

2.3.1 Is Moto concurrency safe?

No. Moto is not designed for multithreaded access/multiprocessing.

14 Chapter 2. Additional Resources

https://brew.sh

Moto Documentation, Release 4.1.2.dev

2.3.2 Why am | getting RUST errors when installing Moto?

Moto has a dependency on the pip-module cryptography. As of Cryptography >= 3.4, this module requires Rust as a
dependency. Most OS/platforms will support the installation of Rust, but if you’re getting any errors related to this, see
the cryptography documentation for more information: https://cryptography.io/en/latest/installation/#rust

2.3.3 Can | mock the default AWS region?

By default, Moto only allows valid regions, supporting the same regions that AWS supports.

If you want to mock the default region, as an additional layer of protection against accidentally touching your real AWS
environment, you can disable this validation:

os.environ["MOTO_ALLOW_NONEXISTENT_REGION"] = True
os.environ["AWS_DEFAULT_REGION"] = "antarctica"

2.4 |1AM-like Access Control

Moto also has the ability to authenticate and authorize actions, just like it’s done by IAM in AWS. This function-
ality can be enabled by either setting the INITIAL_NO_AUTH_ACTION_COUNT environment variable or using the
set_initial_no_auth_action_count decorator. Note that the current implementation is very basic, see the source code
for more information.

2.4.1 INITIAL_NO_AUTH_ACTION_COUNT

If this environment variable is set, moto will skip performing any authentication as many times as the variable’s value,
and only starts authenticating requests afterwards. If it is not set, it defaults to infinity, thus moto will never perform
any authentication at all.

2.4.2 set initial no_auth _action count

This is a decorator that works similarly to the environment variable, but the settings are only valid in the function’s
scope. When the function returns, everything is restored.

@set_initial_no_auth_action_count (4)
@mock_ec2
def test_describe_instances_allowed():
policy_document = {
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "ec2:Describe*",
"Resource": "*"

}

]
}
access_key = ...
create access key for an IAM user/assumed role that has the policy above.

(continues on next page)

2.4. 1AM-like Access Control 15

https://cryptography.io/en/latest/installation/#rust
https://github.com/getmoto/moto/blob/master/moto/iam/access_control.py

Moto Documentation, Release 4.1.2.dev

(continued from previous page)

this part should call __exactly__ 4 AWS actions, so that authentication and.
—authorization starts exactly after this

client = boto3.client('ec2', region_name='us-east-1'",
aws_access_key_id=access_key['AccessKeyId'],
aws_secret_access_key=access_key['SecretAccessKey'])

1f the IAM principal whose access key is used, does not have the permission to.
—describe instances, this will fail

instances = client.describe_instances() ['Reservations'][0]['Instances']

assert len(instances) == 0

See the related test suite for more examples.

2.5 AWS Config Support

An experimental feature for AWS Config has been developed to provide AWS Config capabilities in your unit tests.
This feature is experimental as there are many services that are not yet supported and will require the community to
add them in over time. This page details how the feature works and how you can use it.

2.5.1 What is this and why would | use this?

AWS Config is an AWS service that describes your AWS resource types and can track their changes over time. At
this time, moto does not have support for handling the configuration history changes, but it does have a few methods
mocked out that can be immensely useful for unit testing.

If you are developing automation that needs to pull against AWS Config, then this will help you write tests that can
simulate your code in production.

2.5.2 How does this work?

The AWS Config capabilities in moto work by examining the state of resources that are created within moto, and then
returning that data in the way that AWS Config would return it (sans history). This will work by querying all of the
moto backends (regions) for a given resource type.

However, this will only work on resource types that have this enabled.

Current enabled resource types

1. S3 (all)
2. IAM (Role, Policy)

16 Chapter 2. Additional Resources

https://github.com/getmoto/moto/blob/master/tests/test_core/test_auth.py

Moto Documentation, Release 4.1.2.dev

2.5.3 Developer Guide

There are several pieces to this for adding new capabilities to moto:

1.
2.

Listing resources

Describing resources

For both, there are a number of pre-requisites:

Base Components

In the moto/core/models.py file is a class named ConfigQueryModel. This is a base class that keeps track of all the
resource type backends.

At a minimum, resource types that have this enabled will have:

1.
2.

A config.py file that will import the resource type backends (from the __init__.py)

In the resource’s config.py, an implementation of the ConfigQueryModel class with logic unique to the resource
type
An instantiation of the ConfigQueryModel

In the moto/config/models.py file, import the ConfigQueryModel instantiation, and update RESOURCE_MAP to
have a mapping of the AWS Config resource type to the instantiation on the previous step (just imported).

An example of the above is implemented for S3. You can see that by looking at:

1.
2.

moto/s3/config.py
moto/config/models.py

Testing

For each resource type, you will need to test write tests for a few separate areas:

e Test the backend queries to ensure discovered resources come back (ie for IAM::Policy, write

tests.tests_iam.test_policy_list_config_discovered_resources). For writing these tests, you must not make
use of boto to create resources. You will need to use the backend model methods to provision the resources.
This is to make tests compatible with the moto server. You must make tests for the resource type to test listing
and object fetching.

Test the config dict for all scenarios (ie for JAM::Policy, write tests.tests_iam.test_policy_config_dict). For writ-
ing this test, you’ll need to create resources in the same way as the first test (without using boto), in every
meaningful configuration that would produce a different config dict. Then, query the backend and ensure each
of the dicts are as you expect.

Test that everything works end to end with the boro clients. (ie for
IAM:: Policy, write tests.tests_iam.test_policy_config_client). The main two
items to test will be the boto.client(‘config’).list_discovered_resources(),

boto.client(‘config’).list_aggregate_discovered_resources(), moto.client(‘config’).batch_get_resource_config(),
and moto.client(‘config’).batch_aggregate_get_resource_config(). This test doesn’t have to be super thorough,
but it basically tests that the front end and backend logic all works together and returns correct resources. Beware
the aggregate methods all have capital first letters (ie Limit), while non-aggregate methods have lowercase first
letters (ie limit)

2.5. AWS Config Support 17

Moto Documentation, Release 4.1.2.dev

Listing
S3 is currently the model implementation, but it also odd in that S3 is a global resource type with regional resource
residency.
But for most resource types the following is true:
1. There are regional backends with their own sets of data
2. Config aggregation can pull data from any backend region — we assume that everything lives in the same account

Implementing the listing capability will be different for each resource type. At a minimum, you will need to return a
List of Dict that look like this:

[
{
"type': 'AWS::The AWS Config data type',
'name': 'The name of the resource',
'id': 'The ID of the resource',
'region': 'The region of the resource -- if global, then you may want to have the.
—calling logic pass in the
aggregator region in for the resource region -- or just us-east-1 :P'
}
]

It’s recommended to read the comment for the ConfigQueryModel’s list_config_service_resources function in [base
class here](moto/core/models.py).

A The AWS Config code will see this and format it correct for both aggregated and non-aggregated calls.

General implementation tips

The aggregation and non-aggregation querying can and should just use the same overall logic. The differences are:

1. Non-aggregated listing will specify the region-name of the resource backend backend_region 1. Aggregated listing
will need to be able to list resource types across ALL backends and filter optionally by passing in resource_region.

An example of a working implementation of this is S3.

Pagination should generally be able to pull out the resource across any region so should be sharded by region-item-name
— not done for S3 because S3 has a globally unique name space.

Describing Resources

Fetching a resource’s configuration has some similarities to listing resources, but it requires more work (to implement).
Due to the various ways that a resource can be configured, some work will need to be done to ensure that the Config
dict returned is correct.

For most resource types the following is true:

1. There are regional backends with their own sets of data 1. Config aggregation can pull data from any backend region
— we assume that everything lives in the same account

The current implementation is for S3. S3 is very complex and depending on how the bucket is configured will depend
on what Config will return for it.

When implementing resource config fetching, you will need to return at a minimum None if the resource is not found,
or a dict that looks like what AWS Config would return.

18 Chapter 2. Additional Resources

https://github.com/getmoto/moto/blob/master/moto/s3/config.py

Moto Documentation, Release 4.1.2.dev

It’s recommended to read the comment for the ConfigQueryModel ‘s get_config_resource function in the base class.

2.6 Multi-Account support

By default, Moto processes all requests in a default account: 12345678910. The exact credentials provided are usually
ignored to make the process of mocking requests as hassle-free as possible.

If you want to mock resources in multiple accounts, or you want to change the default account ID, there are multiple
ways to achieve this.

2.6.1 Configure the default account

It is possible to configure the default account ID that will be used for all incoming requests, by setting the environment
variable MOTO_ACCOUNT _ID.

Here is an example of what this looks like in practice:

Create a bucket in the default account
client = boto3.client("s3", region_name="us-east-1")
client.create_bucket (Bucket="bucket-default-account')

Configure another account - all subsequent requests will use this account ID
os.environ["MOTO_ACCOUNT_ID"] = "111111111111"
client.create_bucket (Bucket="bucket-in-account-2")

assert [b["Name"] for b in client2.list_buckets()["Buckets"]] == ["bucket-in-account-2"]

Now revert to the default account, by removing the environment variable

del os.environ["MOTO_ACCOUNT_ID"]

assert [b["Name"] for b in client2.list_buckets() ["Buckets"]] == ["bucket-default-account
S

2.6.2 Configure the account ID using a request header

If you are using Moto in ServerMode you can add a custom header to a request, to specify which account should be
used.

Note: Moto will only look at the request-header if the environment variable is not set.

As an example, this is how you would create an S3-bucket in another account:

headers ={"x-moto-account-id": '333344445555"}
requests.put("http://bucket.localhost:5000/", headers=headers)

This will return a list of all buckets in account 333344445555
requests.get("http://localhost:5000", headers=headers)

This will return an empty list, as there are no buckets in the default account
requests.get("http://localhost:5000")

2.6. Multi-Account support 19

https://github.com/getmoto/moto/blob/master/moto/core/models.py

Moto Documentation, Release 4.1.2.dev

2.6.3 Configure an account using STS

The STS.assume_role()-feature is useful if you want to temporarily use a different set of access credentials. Passing in
arole that belongs to a different account will return a set of credentials that give access to that account.

Note: To avoid any chicken-and-egg problems trying to create roles in non-existing accounts, these Roles do not need
to exist. Moto will only extract the account ID from the role, and create access credentials for that account.

Note: Moto will only look at the access credentials if the environment variable and request header is not set.

Let’s look at some examples.

Create a bucket using the default access credentials
clientl = boto3.client("s3", region_name="us-east-1")
clientl.create_bucket (Bucket="foobar")

Assume a role in our account

Note that this Role does not need to exist

default_account = "123456789012"

sts = boto3.client("sts")

response = sts.assume_role(
RoleArn=f"arn:aws:iam::{default_account}:role/my-role",
RoleSessionName="test-session-name",
ExternalId="test-external-id",

These access credentials give access to the default account
client2 = boto3.client(
"s3",
aws_access_key_id=response["Credentials"]["AccessKeyId"],
aws_secret_access_key=response["Credentials"]["SecretAccessKey"],
aws_session_token=response["Credentials"]["SessionToken"],
region_name="us-east-1",
)
client2.list_buckets() ["Buckets"].should.have.length_of(1)

Because we assumed a role within the same account, we can see the bucket that we’ve just created.

Things get interesting when assuming a role within a different account.

Create a bucket with default access credentials
clientl = boto3.client("s3", region_name="us-east-1")
clientl.create_bucket (Bucket="foobar")

Assume a role in a different account

Note that the Role does not need to exist

sts = boto3.client("sts")

response = sts.assume_role(
RoleArn="arn:aws:iam::111111111111:role/role-in-another-account",
RoleSessionName="test-session-name",
ExternalId="test-external-id",

(continues on next page)

20 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

(continued from previous page)

)

Retrieve all buckets in this new account - this will be completely empty
client2 = boto3.client(
"s3",
aws_access_key_id=response["Credentials"]["AccessKeyId"],
aws_secret_access_key=response['"Credentials"]["SecretAccessKey"],
aws_session_token=response["Credentials"]["SessionToken"],
region_name="us-east-1",
)
client2.list_buckets() ["Buckets"].should.have.length_of(0)

Because we’ve assumed a role in a different account, no buckets were found. The foobar-bucket only exists in the
default account, notin ///7111111111.

2.7 Configuration Options
Moto has a variety of ways to configure the mock behaviour.

2.7.1 Environment Variables

The following is a non-exhaustive list of the environment variables that can be used to configure Moto.

Key Value De- | Explanation
fault
TEST_SERVER_MODbool | False| Useful when you want to run decorated tests against an existing Moto-
Server. All boto3-clients/resources created within the test will point to

http://localhost:5000.
INI- int |0 See IAM-like Access Control.
TIAL_NO_AUTH_AC[TION_COUNT
DE- str | docker.Registry that contains the Docker containers. Used by AWSLambda and

FAULT_CONTAINER| REGISTRY | Batch.
MOTO_ALLOW_NONEXOS TENEe REGION

MOTO_S3_CUSTOM| ENDPOINTS See s3.

2.7.2 Recorder

The Moto Recorder is used to log all incoming requests, which can be replayed at a later date. This is useful if you
need to setup an initial state, and ensure that this is the same across developers/environments.

2.7. Configuration Options 21

Moto Documentation, Release 4.1.2.dev

Usage

Usage in decorator mode:

from moto.moto_api import recorder

Start the recorder
recorder.start_recording()
Make some requests using boto3

When you're ready..
recorder.stop_recording()
log = recorder.download_recording()

Later on, upload this log to another system
recorder.upload_recording(log)

And replay the contents
recorder.replay_recording()

While the recorder is active, new requests will be appended to the existing log
Reset the current log if you want to start with an empty slate
recorder.reset_recording()

Usage in ServerMode:

Start the recorder
requests.post("http://localhost:5000/moto-api/recorder/start-recording")
Make some requests

When you're ready..
requests.post("http://localhost:5000/moto-api/recorder/stop-recording")
log = requests.get("http://localhost:5000/moto-api/recorder/download-recording™) .content

Later on, upload this log to another system
requests.post("http://localhost:5000/moto-api/recorder/upload-recording”, data=log)
and replay the contents
requests.post("http://localhost:5000/moto-api/recorder/replay-recording™)

While the recorder is active, new requests will be appended to the existing log
Reset the current log if you want to start with an empty slate
requests.post("http://localhost:5000/moto-api/recorder/reset-recording")

Note that this feature records and replays the incoming HTTP request. Randomized data created by Moto, such as
resource ID’s, will not be stored as part of the log.

22 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

Recorder Configuration
The requests are stored in a file called moto_recording, in the directory that Python is run from. You can configure this
location using the following environment variable: MOTO_RECORDER_FILEPATH=/whatever/path/you/want

The recorder is disabled by default. If you want to enable it, use the following environment variable:
MOTO_ENABLE_RECORDING=True

Deterministic Identifiers

Moto creates random identifiers for most resources, just like AWS. The Recorder will recreate the same resources every
time, but with different identifiers.

It is possible to seed Moto and ensure that the ‘random’ identifiers are always the same for subsequent requests.

Example invocation:

Ensure the provided parameter ‘a’ is an integer
requests.post("http://motoapi.amazonaws.com/moto-api/seed?a=42")

To try this out, generate a EC2 instance
client = boto3.client("ec2", region_name="us-east-1")
resp = client.run_instances(ImageId="ami-12c6146b", MinCount=1, MaxCount=1)

The resulting Instanceld will always be the same
instance_id = resp["Instances"][0]["Instanceld"]
assert instance_id == "i-d1026706d7e805da8"

To seed Moto in ServerMode:

requests.post(f"http://localhost:5000/moto-api/seed?a=42")

Because the seeding API is only exposed as a request, it will be recorded just like any other request. Seed Moto at the
beginning of a recording to ensure the resulting state will always be the same:

requests.post("http://localhost:5000/moto-api/recorder/start-recording")
requests.post("http://localhost:5000/moto-api/seed?a=42")

client = boto3.client("ec2", region_name="us-east-1")
resp = client.run_instances(ImageId="ami-12c6146b", MinCount=1, MaxCount=1)

requests.post("http://localhost:5000/moto-api/recorder/stop-recording")

2.7.3 Prettify responses

This option allows to prettify responses from moto. Pretty responses are more readable (eg. for debugging purposes).
It also makes moto better in mocking AWS as AWS returns prettified responses.

Ugly output:

<DeleteLaunchTemplatesResponse xmlns="http://ec2.amazonaws.com/doc/2016-11-15/">
—<requestId>178936da-50ad-4d58-8871-22d9979e8658example</requestId><launchTemplate>
—.<defaultVersionNumber>1</defaultVersionNumber><launchTemplateId>1t-d920e32b0cccdbadb</
—launchTemplateId><launchTemplateName>example-name</launchTemplateName></launchTemplate>

#DeletelaunchTemplatesResponse (continues on next page)

2.7. Configuration Options 23

Moto Documentation, Release 4.1.2.dev

(continued from previous page)

|

Prettified output:

<DeleteLaunchTemplatesResponse xmlns="http://ec2.amazonaws.com/doc/2016-11-15/">
<requestId>178936da-50ad-4d58-8871-22d9979%9e8658example</requestId>
<launchTemplate>
<defaultVersionNumber>1</defaul tVersionNumber>
<launchTemplateId>1t-d920e32b0cccd6adb</launchTemplateId>
<launchTemplateName>example-name</launchTemplateName>
</launchTemplate>
</DeleteLaunchTemplatesResponse>

Enabling Pretty responses

As changing responses can interfere with some external tools, it is disabled by default. If you want to enable it, use
environment variable: MOTO_PRETTIFY_RESPONSES=True

2.7.4 State Transitions

When developing against AWS, many API calls are asynchronous. Many resources will take some time to complete,
and you’ll need to write business logic to ensure the application can deal with all possible states. What is the desired
behaviour when the status is initializing? What should happen when the status is finally ready? What should happen
when the resource is still not ready after an hour?

Let’s look at an example. Say you want to create a DAX cluster, and wait until it’s available - or throw an error if this
takes too long.

def create_and_wait_for_cluster(name):
client.create_cluster(ClusterName=name, ...)

cluster_status = get_cluster_status(name)
while cluster_status != "available":

sleep()

if five_minutes_have_passed():
error()

cluster_status = get_cluster_status(name)

Because Moto handles everything in-memory, and no actual servers are created, there is no need to wait until the cluster
is ready - it could be ready immediately. Not having to wait for a resource to be ready is of course the major benefit of
using Moto, but it also means that the entire example above is impossible to test.

Moto exposes an API that can artificially delay these state transitions, allowing you to let Moto resemble the asyn-
chronous nature of AWS as closely as you need.

Sticking with the example above, you may want to test what happens if the cluster takes 5 seconds to create:

from moto.moto_api import state_manager

state_manager.set_transition(model_name="dax::cluster", transition={"progression'": "time

", "seconds": 5})

(continues on next page)

24 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

(continued from previous page)

create_and_wait_for_cluster("my_new_cluster™)

In order to test what happens in the event of a timeout, we can order the cluster to only be ready after 10 minutes:

from moto.moto_api import state_manager

state_manager.set_transition(model_name="dax::cluster", transition={"progression": "time
", "seconds": 600})

try:
create_and_wait_for_cluster("my_new_cluster")
except:
verify_the_correct_error_was_thrown()

In other tests, you may simply want the cluster to be ready as quickly as possible:

from moto.moto_api import state_manager

state_manager.set_transition(model_name="dax::cluster", transition={"progression":
—"immediate"})

So far we’ve seen two possible transitions:
* The state progresses immediately
» The state progresses after x seconds

There is a third possibility, where the state progresses after calling describe_object a specific number of times. This
can be useful if you want to verify that the state does change, but you don’t want your unit test to take too long.

Note: We will use the boto3.client(..).describe_object method as an example throughout this page. This
should be seen as a agnostic version of service-specific methods to verify the status of a resource, such as
boto.client(“dax”).describe_clusters() or boto.client(“support”).describe_cases().

Changing the state after a certain number of invocations can be done like this:

state_manager.set_transition(model_name="dax::cluster", transition={"progression':
—"manual", "times": 3})

The transition is called manual because it requires you to manually invoke the describe_object-method before the status
is progressed. To show how this would work in practice, let’s look at an example test:

client.create_cluster(ClusterName=name, ...)

The first time we retrieve the status

status = client.describe_clusters(ClusterNames=[name]) ["Clusters"]J[0]["Status"]
assert status == "creating"

Second time we retrieve the status

status = client.describe_clusters(ClusterNames=[name]) ["Clusters"]J[0]["Status"]
assert status == "creating"

This is the third time that we're retrieving the status - this time it will advance to.
—»the next status

status = client.describe_clusters(ClusterNames=[name]) ["Clusters"]J[0]["Status"]
assert status == "available"

2.7. Configuration Options 25

Moto Documentation, Release 4.1.2.dev

This should be done cleanly in a while-loop of-course, similar to the create_and_wait_for_cluster defined above - but
this is a good way to showcase the behaviour.

Registered models

A list of all supported models can be found here.

Older versions of Moto may not support all models that are listed here. To see a list of supported models for your
Moto-version, call the get_registered_models-method:

with mock_all(Q):
print(state_manager.get_registered_models())

Note the mock_all-decorator! Models are registered when the mock for that resource is started. If you call this method
outside of a mock, you may see an empty list.

If you’d like to see state transition support for a resource that’s not yet supported, feel free to open an issue or PR.
State Transitions in ServerMode

Configuration state transitions can be done in ServerMode as well, by making a HTTP request to the MotoAPI. This is
an example request for dax::cluster to wait 5 seconds before the cluster becomes ready:

post_body = dict(model_name="dax::cluster", transition={"progression": "time", "seconds
<" 51

resp = requests.post("http://localhost:5000/moto-api/state-manager/set-transition",.
—data=json.dumps (post_body))

An example request to see the currently configured transition for a specific model:

requests.get("http://localhost:5000/moto-api/state-manager/get-transition?model_
—name=dax: :cluster")

We will not list all configuration options here again, but all models and transitions types (as specified above) follow the
same format.

Reset

It is possible to reset the state manager, and undo any custom transitions that were set. Using Python:

from moto.moto_api import state_manager

state_manager.unset_transition(model_name="dax::cluster")

Or if you’re using Moto in ServerMode:

post_body = dict(model_name="dax::cluster")
resp = requests.post("http://localhost:5000/moto-api/state-manager/unset-transition",.
—data=json.dumps (post_body))

26 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

2.7.5 Supported Models for State Transitions

Service: Batch

Model: batch::job Available States:

“SUBMITTED” —> “PENDING” —> “RUNNABLE” —> “STARTING” —> “RUNNING” “RUNNING” —>
SUCCEEDED|FAILED

Transition type: immediate Advancement:

When a user calls submit_job, Moto will go through a few steps to prepare the job, and when ready, execute
that job in a Docker container. There are some steps to go through while the status is SUBMITTED, there
are some steps to follow when the status is PENDING, etcetera.

Moto will try to advance the status itself - the moment this succeeds, the next step is executed. As the
default transition is immediate, the status will advance immediately, and these steps will be executed as
quickly as possible. This ensures that the job will be executed as quickly as possible.

Delaying the execution can be done as usual, by forcing Moto to wait x seconds before transitioning to the
next stage. This can be useful if you need to ‘catch’ a job in a specific stage.

Service: Cloudfront

Model: cloudfront::distribution Available States:
“InProgress” —> “Deployed”
Transition type: Manual - describe the resource 1 time before the state advances Advancement:

Call boto3.client(“cloudfront”).get_distribution(..) to advance a single distribution, or
boto3.client(“cloudfront”).list_distributions(..) to advance all distributions.

Service: DAX

Model: dax::cluster Available States:
“creating” —> “available” “deleting” —> “deleted”
Transition type: Manual - describe the resource 4 times before the state advances Advancement:

Call boto3.client(“dax”).describe_clusters(..).

Service: Glue

Model: glue::job_run Available States:
“STARTING” —> “RUNNING” —> “SUCCEEDED”
Transition type: immediate Advancement:

Call boto3.client(“glue”).get_job_run(..)

2.7. Configuration Options 27

Moto Documentation, Release 4.1.2.dev

Service: S3 (Glacier Restoration)

Model: s3::keyrestore Available States:
None —> “IN_PROGRESS” —> “RESTORED”

Transition type: Immediate - transitions immediately

Service: Support

Model: support::case Available states:

“opened” —> “pending-customer-action” —> “reopened” —> “resolved” —> “unassigned” —> “work-in-
progress” —> “opened”

Transition type: Manual - describe the resource 1 time before the state advances Advancement:

Call boto3.client(“support”).describe_cases(..)

Service: Transcribe

Model: transcribe::vocabulary Available states:
None —> “PENDING —> “READY”

Transition type: Manual - describe the resource 1 time before the state advances Advancement:
Call boto3.client(“transcribe”).get_vocabulary(..)

Model: transcribe::medicalvocabulary Available states:
None —> “PENDING —> “READY”

Transition type: Manual - describe the resource 1 time before the state advances Advancement:
Call boto3.client(“transcribe”).get_medical_vocabulary(..)

Model: transcribe::transcriptionjob Available states:
None —> “QUEUED” —> “IN_PROGRESS” —> “COMPLETED”

Transition type: Manual - describe the resource 1 time before the state advances Advancement:
Call boto3.client(“transcribe”). get_transcription_job(..)

Model: transcribe::medicaltranscriptionjob Available states:
None —> “QUEUED” —> “IN_PROGRESS” —> “COMPLETED”

Transition type: Manual - describe the resource 1 time before the state advances Advancement:

Call boto3.client(“transcribe”).get_medical_transcription_job(..)

28 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

2.8 Implemented Services

Please see a list of all currently supported services. Each service will have a list of the endpoints that are implemented.
Each service will also have an example on how to mock an individual service.

Note that you can mock multiple services at the same time:

@mock_s3
@mock_sqgs
def test_both_s3_and_sqs():

@mock_all ()
def test_all_supported_services_at_the_same_time():

2.8.1 acm

Example usage

@mock_acm
def test_acm_behaviour:
boto3.client("acm™)

Implemented features for this service
* [X] add_tags_to_certificate
¢ [X] delete_certificate
¢ [] describe_certificate
e [X] export_certificate
* [] get_account_configuration
¢ [X] get_certificate
e [] import_certificate
e [] list_certificates
e []list_tags_for_certificate
¢ [] put_account_configuration
* [X] remove_tags_from_certificate
¢ [] renew_certificate
¢ [X] request_certificate
The parameter DomainValidationOptions has not yet been implemented
¢ [] resend_validation_email

* [] update_certificate_options

2.8. Implemented Services 29

Moto Documentation, Release 4.1.2.dev

2.8.2 acm-pca

class moto.acmpca.models.ACMPCABackend (region_name: str, account_id: str)
Implementation of ACMPCA APIs.

Example usage

@mock_acmpca
def test_acmpca_behaviour:
boto3.client("acm-pca")

Implemented features for this service
* [X] create_certificate_authority

The following parameters are not yet implemented: IdempotencyToken, KeyStorageSecurityStan-
dard, UsageMode

e [] create_certificate_authority_audit_report
[] create_permission
e [X] delete_certificate_authority
* [] delete_permission
e [] delete_policy
e [X] describe_certificate_authority
* [] describe_certificate_authority_audit_report
* [X] get_certificate
The CertificateChain will always return None for now
e [X] get_certificate_authority_certificate
e [X] get_certificate_authority_csr
e [] get_policy
* [X] import_certificate_authority_certificate
¢ [X] issue_certificate

The following parameters are not yet implemented: ApiPassthrough, SigningAlgorithm, Tem-
plateArn, Validity, ValidityNotBefore, IdempotencyToken Some fields of the resulting certificate will
have default values, instead of using the CSR

e [] list_certificate_authorities
* [] list_permissions
o [X] list_tags
Pagination is not yet implemented
* [] put_policy
¢ [] restore_certificate_authority
¢ [X] revoke_certificate

This is currently a NO-OP

30 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

[X] tag_certificate_authority
[X] untag_certificate_authority

[X] update_certificate_authority

2.8.3 amp

class moto.amp.models.PrometheusServiceBackend (region_name: str, account_id: str)

Implementation of PrometheusService APIs.

Example usage

@mock_amp
def test_amp_behaviour:

boto3.client("amp")

Implemented features for this service

[] create_alert_manager_definition
[X] create_logging_configuration
[X] create_rule_groups_namespace
The ClientToken-parameter is not yet implemented
[X] create_workspace
The ClientToken-parameter is not yet implemented
[] delete_alert_manager_definition
[X] delete_logging_configuration
[X] delete_rule_groups_namespace
The ClientToken-parameter is not yet implemented
[X] delete_workspace
The ClientToken-parameter is not yet implemented
[] describe_alert_manager_definition
[X] describe_logging_configuration
[X] describe_rule_groups_namespace
[X] describe_workspace
[X] list_rule_groups_namespaces
[X] list_tags_for_resource
[X] list_workspaces
[] put_alert_manager_definition
[X] put_rule_groups_namespace
The ClientToken-parameter is not yet implemented
[X] tag_resource

[X] untag_resource

2.8. Implemented Services

31

Moto Documentation, Release 4.1.2.dev

[X] update_logging_configuration
[X] update_workspace_alias

The ClientToken-parameter is not yet implemented

2.8.4 apigateway

class moto.apigateway.models.APIGatewayBackend (region_name: str, account_id: str)

API Gateway mock.

The public URLs of an API integration are mocked as well, i.e. the following would be supported in Moto:

client.put_integration(
restApild=api_id,
uri="http://httpbin.org/robots.txt",
integrationHttpMethod="GET"

)

deploy_url = f"https://{api_id}.execute-api.us-east-1.amazonaws.com/dev"

requests.get(deploy_url).content.should.equal(b"a fake response")

Limitations:
* Integrations of type HTTP are supported
* Integrations of type AWS with service DynamoDB are supported
 Other types (AWS_PROXY, MOCK, etc) are ignored
 Other services are not yet supported
e The BasePath of an API is ignored
* TemplateMapping is not yet supported for requests/responses

* This only works when using the decorators, not in ServerMode

Example usage

@Gmock_apigateway
def test_apigateway_behaviour:

boto3.client("apigateway")

Implemented features for this service

[X] create_api_key

[X] create_authorizer

[X] create_base_path_mapping
[X] create_deployment

[] create_documentation_part

[] create_documentation_version
[X] create_domain_name

[X] create_model

32

Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

[X] create_request_validator
[X] create_resource

[X] create_rest_api

[X] create_stage

[X] create_usage_plan

[X] create_usage_plan_key

[X] create_vpc_link

[X] delete_api_key

[X] delete_authorizer

[X] delete_base_path_mapping
[] delete_client_certificate

[X] delete_deployment

[] delete_documentation_part
[] delete_documentation_version
[X] delete_domain_name

[X] delete_gateway_response
[X] delete_integration

[X] delete_integration_response
[X] delete_method

[X] delete_method_response

[] delete_model

[X] delete_request_validator
[X] delete_resource

[X] delete_rest_api

[X] delete_stage

[X] delete_usage_plan

[X] delete_usage_plan_key

[X] delete_vpc_link

[] flush_stage_authorizers_cache
[] flush_stage_cache

[] generate_client_certificate

[] get_account

[X] get_api_key

[X] get_api_keys

[X] get_authorizer

[X] get_authorizers

2.8.

Implemented Services

33

Moto Documentation, Release 4.1.2.dev

[X] get_base_path_mapping

[X] get_base_path_mappings

[] get_client_certificate

[] get_client_certificates

[X] get_deployment

[X] get_deployments

[] get_documentation_part

[] get_documentation_parts

[] get_documentation_version

[] get_documentation_versions

[X] get_domain_name

[X] get_domain_names

[] get_export

[X] get_gateway_response

[X] get_gateway_responses
Pagination is not yet implemented

[X] get_integration

[X] get_integration_response

[X] get_method

[X] get_method_response

[X] get_model

[] get_model_template

[X] get_models

[X] get_request_validator

[X] get_request_validators

[X] get_resource

[X] get_resources

[X] get_rest_api

[] get_rest_apis

[] get_sdk

[] get_sdk_type

[] get_sdk_types

[X] get_stage

[X] get_stages

[] get_tags

[] get_usage

34

Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

[X] get_usage_plan
[X] get_usage_plan_key
[X] get_usage_plan_keys
[X] get_usage_plans
[X] get_vpc_link
[X] get_vpc_links
Pagination has not yet been implemented
[] import_api_keys
[] import_documentation_parts
[X] import_rest_api
Only a subset of the OpenAPI spec 3.x is currently implemented.
[X] put_gateway_response
[X] put_integration
[X] put_integration_response
[X] put_method
[X] put_method_response
[X] put_rest_api
Only a subset of the OpenAPI spec 3.x is currently implemented.
[] tag_resource
[] test_invoke_authorizer
[] test_invoke_method
[] untag_resource
[] update_account
[X] update_api_key
[X] update_authorizer
[X] update_base_path_mapping
[] update_client_certificate
[] update_deployment
[] update_documentation_part
[] update_documentation_version
[] update_domain_name
[] update_gateway_response
[] update_integration
[] update_integration_response
[] update_method

[] update_method_response

2.8.

Implemented Services 35

Moto Documentation, Release 4.1.2.dev

* [] update_model

* [X] update_request_validator
* [] update_resource

e [X] update_rest_api

e [X] update_stage

* [] update_usage

* [X] update_usage_plan

* [] update_vpc_link

2.8.5 apigatewayv2

class moto.apigatewayv2.models.ApiGatewayV2Backend (region_name: str, account_id: str)
Implementation of ApiGatewayV2 APIs.

Example usage

@mock_apigatewayv2
def test_apigatewayv2_behaviour:
boto3.client("apigatewayv2")

Implemented features for this service
e [X] create_api
The following parameters are not yet implemented: CredentialsArn, RouteKey, Tags, Target
* [X] create_api_mapping
¢ [X] create_authorizer
e [] create_deployment
¢ [X] create_domain_name
e [X] create_integration
e [X] create_integration_response
¢ [X] create_model
¢ [X] create_route
* [X] create_route_response
The following parameters are not yet implemented: ResponseModels, ResponseParameters
e [] create_stage
* [X] create_vpc_link
¢ [] delete_access_log_settings
e [X] delete_api
e [X] delete_api_mapping
¢ [X] delete_authorizer

¢ [X] delete_cors_configuration

36 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

[] delete_deployment
[X] delete_domain_name
[X] delete_integration
[X] delete_integration_response
[X] delete_model
[X] delete_route
[X] delete_route_request_parameter
[X] delete_route_response
[] delete_route_settings
[] delete_stage
[X] delete_vpc_link
[] export_api
[X] get_api
[X] get_api_mapping
[X] get_api_mappings
[X] get_apis
Pagination is not yet implemented
[X] get_authorizer
[] get_authorizers
[] get_deployment
[] get_deployments
[X] get_domain_name
[X] get_domain_names
Pagination is not yet implemented
[X] get_integration
[X] get_integration_response
[X] get_integration_responses
[X] get_integrations
Pagination is not yet implemented
[X] get_model
[] get_model_template
[] get_models
[X] get_route
[X] get_route_response
[] get_route_responses

[X] get_routes

2.8.

Implemented Services

37

Moto Documentation, Release 4.1.2.dev

Pagination is not yet implemented
e [] get_stage
e [] get_stages
e [X] get_tags
e [X] get_vpc_link
e [X] get_vpc_links
* [] import_api

* [X] reimport_api

Only YAML is supported at the moment. Full OpenAPI-support is not guaranteed. Only limited

validation is implemented
¢ [] reset_authorizers_cache
e [X] tag_resource
* [X] untag_resource

* [X] update_api

The following parameters have not yet been implemented: CredentialsArn, RouteKey, Target

* [] update_api_mapping

* [X] update_authorizer

* [] update_deployment

¢ [] update_domain_name
e [X] update_integration

* [X] update_integration_response
¢ [X] update_model

* [X] update_route

* [] update_route_response
* [] update_stage

* [X] update_vpc_link

2.8.6 application-autoscaling

Example usage

@mock_applicationautoscaling
def test_applicationautoscaling_behaviour:
boto3.client("application-autoscaling")

Implemented features for this service
* [X] delete_scaling_policy

¢ [X] delete_scheduled_action

* [X] deregister_scalable_target Registers or updates a scalable target.

38

Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

[X] describe_scalable_targets Describe scalable targets.
* [] describe_scaling_activities
* [X] describe_scaling_policies
¢ [X] describe_scheduled_actions
Pagination is not yet implemented
* [X] put_scaling_policy
* [X] put_scheduled_action

* [X] register_scalable_target Registers or updates a scalable target.

2.8.7 appsync

class moto.appsync.models.AppSyncBackend (region_name: str, account_id: str)
Implementation of AppSync APIs.

Example usage

@mock_appsync
def test_appsync_behaviour:
boto3.client("appsync")

Implemented features for this service
* [] associate_api
[] create_api_cache
e [X] create_api_key
¢ [] create_data_source
¢ [] create_domain_name
e [] create_function
* [X] create_graphql_api
¢ [] create_resolver
* [] create_type

* [] delete_api_cache

[X] delete_api_key

[] delete_data_source

[] delete_domain_name

[] delete_function

[X] delete_graphql_api

[] delete_resolver
e [] delete_type
* [] disassociate_api

¢ [] evaluate_code

2.8. Implemented Services 39

Moto Documentation, Release 4.1.2.dev

[] evaluate_mapping_template
[] flush_api_cache

[] get_api_association

[] get_api_cache

[] get_data_source

[] get_domain_name

[] get_function

[X] get_graphql_api

[] get_introspection_schema

[] get_resolver

[X] get_schema_creation_status
[X] get_type

[X] list_api_keys

Pagination or the maxResults-parameter have not yet been implemented.

[] list_data_sources
[] list_domain_names
[] List_functions

[X] list_graphql_apis

Pagination or the maxResults-parameter have not yet been implemented.

[] list_resolvers

[]list_resolvers_by_function
[X] list_tags_for_resource
[]1list_types

[X] start_schema_creation
[X] tag_resource

[X] untag_resource

[] update_api_cache

[X] update_api_key

[] update_data_source

[] update_domain_name
[] update_function

[X] update_graphql_api

[] update_resolver

[] update_type

40

Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

2.8.8 athena

Example usage

@mock_athena
def test_athena_behaviour:
boto3.client("athena")

Implemented features for this service
* [] batch_get_named_query
* [] batch_get_prepared_statement
e [] batch_get_query_execution
* [X] create_data_catalog
* [X] create_named_query
e [] create_notebook
¢ [] create_prepared_statement
* [] create_presigned_notebook_url
* [X] create_work_group
* [] delete_data_catalog
¢ [] delete_named_query

¢ [] delete_notebook

[] delete_prepared_statement

[] delete_work_group

* [] export_notebook

* [] get_calculation_execution

* [] get_calculation_execution_code
e [] get_calculation_execution_status
e [X] get_data_catalog

e [] get_database

e [X] get_named_query

* [] get_notebook_metadata

e [] get_prepared_statement

* [X] get_query_execution

o [X] get_query_results

Queries are not executed, so this call will always return 0 rows by default.

When using decorators, you can use the internal API to manually set results:

2.8. Implemented Services 41

Moto Documentation, Release 4.1.2.dev

column_info = [{

3]

from moto.athena.models import athena_backends, QueryResults
from moto.core import DEFAULT_ACCOUNT_ID

backend = athena_backends[DEFAULT_ACCOUNT_ID]["us-east-1"]
rows = [{'Data': [{'VarCharValue':

'CatalogName':
'SchemaName ' :
'TableName':
'Name ' :
'Label':
'Type':
'Precision':
'Scale':
'Nullable':
'CaseSensitive':

"NOT_NULL',

results = QueryResults(rows=rows, column_info=column_info)
backend.query_results["test"] = results

result = client.get_query_results(QueryExecutionId="test")

[] get_query_runtime_statistics

[] get_session

[] get_session_status

[] get_table_metadata

[X] get_work_group

[] import_notebook

[]1list_application_dpu_sizes
[] list_calculation_executions
[X] list_data_catalogs

[] list_databases

[]list_engine_versions

[] list_executors

[]1list_named_queries

[] list_notebook_metadata

[] list_notebook_sessions

[] list_prepared_statements
[X] list_query_executions

[] list_sessions

[] list_table_metadata

[]list_tags_for_resource

[X] list_work_groups

42

Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

¢ [] start_calculation_execution
» [X] start_query_execution

e [] start_session

¢ [] stop_calculation_execution
* [X] stop_query_execution

* [] tag_resource

e [] terminate_session

* [] untag_resource

* [Jupdate_data_catalog

* [] update_named_query

* [] update_notebook

* [] update_notebook_metadata
* [] update_prepared_statement

* [] update_work_group

2.8.9 autoscaling

Example usage

@mock_autoscaling
def test_autoscaling_behaviour:
boto3.client("autoscaling™)

Implemented features for this service
¢ [X] attach_instances
* [X] attach_load_balancer_target_groups
e [X] attach_load_balancers

e [] attach_traffic_sources

[] batch_delete_scheduled_action

e [] batch_put_scheduled_update_group_action
¢ [] cancel_instance_refresh

* [] complete_lifecycle_action

* [X] create_auto_scaling_group

* [X] create_launch_configuration

* [X] create_or_update_tags

[X] delete_auto_scaling_group

[X] delete_launch_configuration

[X] delete_lifecycle_hook

2.8. Implemented Services 43

Moto Documentation, Release 4.1.2.dev

e [] delete_notification_configuration

* [X] delete_policy

¢ [X] delete_scheduled_action

e [X] delete_tags

* [] delete_warm_pool

¢ [] describe_account_limits

* [] describe_adjustment_types

* [X] describe_auto_scaling_groups

e [X] describe_auto_scaling_instances

* [] describe_auto_scaling_notification_types
¢ [] describe_instance_refreshes

* [X] describe_launch_configurations

* [] describe_lifecycle_hook_types

* [X] describe_lifecycle_hooks

* [X] describe_load_balancer_target_groups
¢ [X] describe_load_balancers

* [] describe_metric_collection_types

e [] describe_notification_configurations
* [X] describe_policies

* [] describe_scaling_activities

* [] describe_scaling_process_types

¢ [X] describe_scheduled_actions

e [X] describe_tags

Pagination is not yet implemented. Only the auto-scaling-group and propagate-at-launch filters are
implemented.

e [] describe_termination_policy_types

¢ [] describe_traffic_sources

* [] describe_warm_pool

¢ [X] detach_instances

* [X] detach_load_balancer_target_groups
¢ [X] detach_load_balancers

e [] detach_traffic_sources

¢ [] disable_metrics_collection

¢ [X] enable_metrics_collection

* [] enter_standby

* [X] execute_policy

44 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

e [] exit_standby
* [] get_predictive_scaling_forecast
* [] put_lifecycle_hook
¢ [] put_notification_configuration
e [X] put_scaling_policy
* [X] put_scheduled_update_group_action
* [] put_warm_pool
e [] record_lifecycle_action_heartbeat
* [X] resume_processes
* [X] set_desired_capacity
¢ [X] set_instance_health
The ShouldRespectGracePeriod-parameter is not yet implemented
» [X] set_instance_protection
e [] start_instance_refresh
* [X] suspend_processes

* [] terminate_instance_in_auto_scaling_group

[X] update_auto_scaling_group

The parameter DefaultCooldown, PlacementGroup, TerminationPolicies are not yet implemented

2.8.10 batch

class moto.batch.models.BatchBackend(region_name: str, account_id: str)
Batch-jobs are executed inside a Docker-container. Everytime the submit_job-method is called, a new Docker
container is started. A job is marked as ‘Success’ when the Docker-container exits without throwing an error.

Use @mock_batch_simple instead if you do not want to use a Docker-container. With this decorator, jobs are
simply marked as ‘Success’ without trying to execute any commands/scripts.

Example usage

@mock_batch
def test_batch_behaviour:
boto3.client("batch™)

Implemented features for this service
* [X] cancel_job
* [X] create_compute_environment
* [X] create_job_queue

* [X] create_scheduling_policy

[X] delete_compute_environment

[X] delete_job_queue

2.8. Implemented Services 45

Moto Documentation, Release 4.1.2.dev

* [X] delete_scheduling_policy
e [X] deregister_job_definition
* [X] describe_compute_environments
Pagination is not yet implemented
¢ [X] describe_job_definitions
Pagination is not yet implemented
* [X] describe_job_queues
Pagination is not yet implemented
e [X] describe_jobs
* [X] describe_scheduling_policies
e [X] list_jobs
Pagination is not yet implemented
e [X] list_scheduling_policies
Pagination is not yet implemented
o [X] list_tags_for_resource
e [X] register_job_definition
e [X] submit_job
Parameters RetryStrategy and Parameters are not yet implemented.
e [X] tag_resource
* [X] terminate_job
* [X] untag_resource
* [X] update_compute_environment
* [X] update_job_queue
* [X] update_scheduling_policy

2.8.11 budgets

class moto.budgets.models.BudgetsBackend (region_name: str, account_id: str)
Implementation of Budgets APIs.

Example usage

@mock_budgets
def test_budgets_behaviour:
boto3.client("budgets")

Implemented features for this service
* [X] create_budget
* [] create_budget_action

¢ [X] create_notification

46 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

e [] create_subscriber

[X] delete_budget

[] delete_budget_action

[X] delete_notification

[] delete_subscriber

[X] describe_budget

* [] describe_budget_action

e [] describe_budget_action_histories

* [] describe_budget_actions_for_account

* [] describe_budget_actions_for_budget

¢ [] describe_budget_notifications_for_account

e [] describe_budget_performance_history

[X] describe_budgets

Pagination is not yet implemented

[X] describe_notifications_for_budget
Pagination has not yet been implemented

¢ [] describe_subscribers_for_notification

¢ [] execute_budget_action

* [] update_budget

* [] update_budget_action

* [] update_notification

¢ [] update_subscriber

2.8.12 ce

class moto.ce.models.CostExplorerBackend (region_name: str, account_id: str)
Implementation of CostExplorer APIs.

Example usage

@mock_ce
def test_ce_behaviour:
boto3.client("ce")

Implemented features for this service
¢ [] create_anomaly_monitor
* [] create_anomaly_subscription
* [X] create_cost_category_definition
The EffectiveOn and ResourceTags-parameters are not yet implemented

¢ [] delete_anomaly_monitor

2.8. Implemented Services 47

Moto Documentation, Release 4.1.2.dev

e [] delete_anomaly_subscription
e [X] delete_cost_category_definition
The EffectiveOn-parameter is not yet implemented
* [X] describe_cost_category_definition
The EffectiveOn-parameter is not yet implemented
e [] get_anomalies
* [] get_anomaly_monitors
e [] get_anomaly_subscriptions
e [] get_cost_and_usage
e [] get_cost_and_usage_with_resources
e [] get_cost_categories
* [] get_cost_forecast
* [] get_dimension_values
* [] get_reservation_coverage
e [] get_reservation_purchase_recommendation
* [] get_reservation_utilization
e [] get_rightsizing_recommendation
* [] get_savings_plans_coverage
e [] get_savings_plans_purchase_recommendation
* [] get_savings_plans_utilization
e [] get_savings_plans_utilization_details
e [] get_tags
e [] get_usage_forecast
e []list_cost_allocation_tags
[]list_cost_category_definitions
e [] list_savings_plans_purchase_recommendation_generation
e [X] list_tags_for_resource
* [] provide_anomaly_feedback
e [] start_savings_plans_purchase_recommendation_generation
* [X] tag_resource
* [X] untag_resource
* [] update_anomaly_monitor
¢ [] update_anomaly_subscription

* [Jupdate_cost_allocation_tags_status

[X] update_cost_category_definition

The EffectiveOn-parameter is not yet implemented

48

Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

2.8.13 cloudformation

class moto.cloudformation.models.CloudFormationBackend (region_name: str, account_id: str)
CustomResources are supported when running Moto in ServerMode. Because creating these resources involves
running a Lambda-function that informs the MotoServer about the status of the resources, the MotoServer has
to be reachable for outside connections. This means it has to run inside a Docker-container, or be started using
moto_server -h 0.0.0.0.

Example usage

@mock_cloudformation
def test_cloudformation_behaviour:
boto3.client("cloudformation")

Implemented features for this service
* [] activate_type
e [] batch_describe_type_configurations
* [] cancel_update_stack
* [] continue_update_rollback
* [X] create_change_set
e [X] create_stack
The functionality behind EnableTerminationProtection is not yet implemented.
¢ [X] create_stack_instances

The following parameters are not yet implemented: DeploymentTargets. AccountFilterType, Deploy-
mentTargets. AccountsUrl, OperationPreferences, CallAs

e [X] create_stack_set

The following parameters are not yet implemented: Stackld, AdministrationRoleARN, AutoDeploy-
ment, ExecutionRoleName, CallAs, ClientRequestToken, ManagedExecution

e [] deactivate_type

[X] delete_change_set
[X] delete_stack

¢ [X] delete_stack_instances

The following parameters are not yet implemented: DeploymentTargets, OperationPreferences, Re-
tainStacks, Operationld, CallAs

[X] delete_stack_set

e [] deregister_type

¢ [] describe_account_limits

* [X] describe_change_set

¢ [] describe_change_set_hooks
e [] describe_publisher

¢ [] describe_stack_drift_detection_status

2.8. Implemented Services 49

Moto Documentation, Release 4.1.2.dev

¢ [X] describe_stack_events

¢ [X] describe_stack_instance

e [X] describe_stack_resource

¢ [] describe_stack_resource_drifts
¢ [X] describe_stack_resources
¢ [X] describe_stack_set

* [X] describe_stack_set_operation
¢ [X] describe_stacks

* [] describe_type

* [] describe_type_registration
e [] detect_stack_drift

¢ [] detect_stack_resource_drift
e [] detect_stack_set_drift

* [] estimate_template_cost

* [X] execute_change_set

e [X] get_stack_policy

e [X] get_template

* [] get_template_summary

* [] import_stacks_to_stack_set
e [X] list_change_sets

e [X] list_exports

* [] list_imports

e [X] list_stack_instances

Pagination is not yet implemented. The parameters StackInstanceAccount/StackInstanceRegion are
not yet implemented.

e [X] list_stack_resources

e [X] list_stack_set_operation_results
e [X] list_stack_set_operations

e [X] list_stack_sets

e [X] list_stacks

o []list_type_registrations

e []list_type_versions

o []list_types

* [] publish_type

* [] record_handler_progress

e [] register_publisher

50 Chapter 2. Additional Resources

Moto Documentation, Release 4.1.2.dev

* [] register_type
[] rollback_stack

* [X] set_stack_policy
Note that Moto does no validation/parsing/enforcement of this policy - we simply persist it.
* [] set_type_configuration
* [] set_type_default_version
* [] signal_resource
* [X] stop_stack_set_operation
e [] test_type
* [X] update_stack
¢ [X] update_stack_instances
Calling this will update the parameters, but the actual resources are not updated
e [X] update_stack_set

* [] update_termination_protection

[X] validate_template

2.8.14 cloudfront

Example usage

@mock_cloudfront
def test_cloudfront_behaviour:
boto3.client("cloudfront™)

Implemented features for this service
¢ [] associate_alias
* [] copy_distribution
* [] create_cache_policy
e [] create_cloud_front_origin_access_identity
e [] create_continuous_deployment_policy
¢ [X] create_distribution

Not all configuration options are supported yet. Please raise an issue if we’re not persisting/returning
the correct attributes for your use-case.

[X] create_distribution_with_tags

* [] create_field_level_encryption_config
¢ [] create_field_level_encr